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Singular Value Decomposition and Density Estimation for Filtering and Analysis of 
Gene Expression 

We present three algorithms for gene expression analysis. Algorithm 1, known as serial 
correlation test, is used for filtering out noisy gene expression profiles. Algorithm 2 and 3 
project the gene expression profiles into 
2-dimensional expression subspaces ident ifiecl by Singular Value Decomposition. 
Density estimates a e  used to determine expression profiles that have a high 
correlation with the subspace and low levels of noise. High density regions in 
the projection, clusters of co-expressed genes, are identified. We illustrate 
the algorithms by application to the yeast cell-cycle data by Cho et.al. and 
comparison of the results. 
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1 ~ntroduction 

Due to the large amount of data and high levels of noise in the data, gene expression analysis is a challenging task. We 
introduce three algorithms, two of them novel, for filtering and identification of significanlty expressed genes in time 
series gene expression data. The two novel algorithms are based on Singular Value Decomposition (SVD) [ 11 and the 
projection of the gene expression profiles into 2 dimensional expression subspaces identified by it. We illustrate the 
algorithms by application to the time-series yeast cell-cycle data published by Cho et al. [5]. 

The first algorithm that we present is the Serial Correlation Test [2]. It is based on the auto-correlation function of 
a time series and is a common algorithm in time series analysis. To our knowledge the serial correlation test has never 
before been applied to gene expression data. We use this algorithm for filtering out noisy gene expression profiles. 
We find it in certain circumstances more useful for this task than commonly used fold-change approaches (as we were 
able to show when comparing our analysis to the one of Cho ef al. who used the fold-change approach). Filtering out 
noisy expression profiles can significantly improve subsequent analysis. 

Algorithms 2 and 3 are novel and are applied here to the gene expression data filtered with the Serial Correlation 
test. In algorithm 2 we projcct the gene exression profiles into a two-dimesnional expression subspace of interest. 
We use Singular Value Decomposition (SVD) to select such a sub-space. Alter et al. and Holter et al. [3, 41 have 
shown that the first 2 or 3 expression patterns detected by SVD, also called eigengenes2, typically capture most of 
the interesting gene expression variation in an experiment. We therefore project the gene expression profiles into a 
2-dimensional subspace of interest of the fmt few eigengenes. A crucial observation is that gene expression profiles 
that project to the boundary of that space will be highly correlated with that subspace whereas gene expression profiles 
thal project towards the center will have a low correlation with that space. In many cases one can also observe that 
the low-correlated expression profiles are rather uniformly distributed around the center of the space, due to noise, 
whereas there is structure, e.g. clustcrs, in the projection of the expression profiles at the boundary of the sapce. Our 
algorithm 2 uses this observation to separate expression profiles whose projection show some structure and which are 
highly correlated with the two-dimensional subspace from the ones that are low correlated and whose projection is 
mostly uniform due to noisc in the expression profiles. This performs a kind of second 'filtering' of the data. Gene 
expression profiles which are noisy or with patterns unrelated to the subspace will be removed. Algorithm 2 searches 
for a boundary in the projection plot that separates the expression profiles whose projection is uniform from the ones 
whose projection shows structure. The search for this boundary is automated. We calculate the one-dimensional 
distribution of the polar angles of the expression profiles inside a circle with radius r. The boundary i is selected 
where the change in this distribution from the uniform distribution is largest. It is important to note that no parameters 
need to be specified a priori for this algorilhm, the selection of the boundary is data driven. For example, it adapts to 
different levels of noise in the data. 

Our 3rd algorithm is a 'clustering algorithm'. It takes the gcnes identified by algorithm 2 and finds clusters of 
co-expressed genes, also based on the distribution of polar angles. 

2 Application to Yeast Cell-Cycle Data 

We illustrate the algorithms by application to the time-series yeast cell-cycle data published by Cho et al. [5]. The 
original data set illustrated by Cho et al. contained about 6200 gene expression profiles. Our goal was to detect cell- 

'To whom concspondcncc should hc adtlrcsscd. Contact: andrcas@lanl.gov 
'Altcr etnl. introduccd thc terni 'cigcngcnc' for thcsc SVD expression pattcrns, we adapt this notation hcrc. 



cycle related genes, i.e, genes with periodic expression profiles, and compare our findings to the analysis by Cho et al. 

First the serial correlation test was used to remove from the 6200 about 3000 expression profiles which seemed 
mostly random. SVD was performed on the remaining gene expression profiles. The second and third eigengenes 
are periodic, sine-like patterns with approximately n f 2  phase difference '. To detect genes with periodic expression 
profiles we project the data into the subspace of eigengenes 2 and 3. 

Algorithm 2 was applied to h i d  a boundary that separates expression profiles that are highly Correlated with 
eigengenes 2 and 3 ,  i.e. genes with periodic expression profiles, and which show structure in their projection from 
genes that are low correlated, i.e. do not show very periodic expression profiles, and which are mostly uniformly 
distributed around the origin of the space. See Fig. 2 a) for the projection plot and the boundary selected by Algorithm 
2. About 800 genes with periodic expression profiles were found outside of the boundary. The figure also shows 
the 3 regions with the highest density of expression profiles identified by Algorithm 3. Fig. 2 b) shows the average 
expression profiles of the genes in these 3 regions. The expression profiles are clearly periodic. 

b) mean expresslon levels al ~ m l i i c t l ~ ~ ~  dot 
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Figure 1: Fitme a) shows the projection plot with the boundary selected by algorithm 2 and the 3 clustcrs of high-density identified 
by algorithm 3. Figure b) shows the average expression profiles of the genes hi the thre clusters and the 95% confidence intervals. 

3 Results and lurther work 

We are currently comparing our results to Cho et al. and other studies on the same data and other yeast cell-cycle data 
[6]. The overall biological significance ofeach cluster can be investigated by associating the clusters with phases of the 
cell cycle, The biological significance of individual genes within each cluster can be explored making use ofthe KEGG 
database, seeking trends in the organization of genes into clusters. One observation we already made is that of the 184 
hand-selected genes that were annotated as being involved in transcription, 32 were among the genes that our analysis 
reported as cell-cycle related. Of the 32 only 1 is found within one of the clusters, indicating a underrepresentation 
of transcription-related genes in this cluster. Another observation we made is the inclusion of genes encoding SWI6 
and MRPl among our predicted cell-cycle genes. These genes were not among the cell-cycle genes identified by Cho 
et al. , despite being known cell-cycle regulaiars. We have reproduced Cho et al. 's fold-change filtering and found 
that these genes were removed by this filtering approach, although they exhibit clear periodic expression profiles4 We 
found that many other gencs we found with periodic expression profiles were removed by Cho et al. 's fold-change 
approach. 

Further work is also planned in extending the algorithms. We want to generalize our algorithms to work by 
projection in n dimensions, not just two. We want to explore iterative approaches, i.e. using different eigengenes in 
different iterative applications of the algorithms. 

3The h t  eigengeiie is non-periodic, it shows a slow, linear decrease. It might capture transient expression changes due to the experimental 

4Thc fold-change approach docs not 'pay attcntioa' to pattcms, only to some absolute change in expression at some time. 
setup, e.g. the release of the yenst cells from cell-cycle arrest at the beginning of the experiment. 
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